Fundamental ParticlesFundamental Particles

Each particle has a corresponding antiparticle with the same mass but opposite values for all other properties (e.g. strangeness, charge). Examples of particle-antiparticle pairs include: electron-positron, proton-antiproton, neutronantineutron, neutrino-antineutrino.                                                                    

Hadrons:

  1. Composed of quarks so not fundamental
  2. Subject to strong nuclear force
  3. Baryons and mesons 4. g. protons and neutrons

Leptons:

  1. Fundamental
  2. Subject to weak nuclear force
  3. Electrons and neutrinos

The quark model of hadrons proposes that hadrons consist of a combination of 6 quarks: up, down, top, bottom, strange and charm (and their respective antiquarks). 

Quark                Charge / e      Strangeness

Up                            +frac{2}{3}                    0

Down                      −(1/3)                  0

Strange                   −(1/3) 

The antiparticles of these quarks have the opposite charge and strangeness, but the same mass. Protons are uud; neutrons are udd. 

There are four fundamental forces in nature:

Fundamental force Effect Relative strength Range (m)
Strong nuclear On nucleons 1 ~10-15
Electromagnetic On charged particles 10-3 Infinite
Weak nuclear Responsible for β-decay 10-6 ~10-18
Gravitational On all particles with mass 10-40 Infinite 

 

Beta decay is the emission of electrons or positrons. The force responsible for it is the weak nuclear force. It involves changes to neutrons or protons.

  1. 10n → 11p + −01e + ̅
  2. This can be explained in terms of quark transformations: d → u + 01e + ̅ β+ decay:
  3. 10p → 11n + +01e +
  4. This can be explained in terms of quark transformations: u → d + +01e +

In both cases, charge is conserved.