Thermodynamics

Name                                   Definition Formulae
Specific heat
capacity
The amount of heat energy required to change the temperature
of a unit mass of a substance by a unit temperature
Delta E=mcDelta Theta
Specific
latent heat
The amount of heat energy required per unit mass of a substance
to change the state from … to … at a constant temperature
Delta E=LDelta m
                                                                       KINETIC THEORY
Kinetic
model of gas
Assumption:

  •  A gas is made of lots of particles
  •  Volume of particle << Volume of container
  •  Particles move at random
  •  Particles collide elastically (KE is conserved)
  •  No potential energy between particle (PE=0)
  • The mean KE of particle is directly proportional to the temperature
Internal
energy
Random distribution of potential and kinetic energy among the
molecules
                                                            IDEAL GAS EQUATION
Ideal gas
equation
pV=frac{1}{3}Nm< c^{2}> =NKT=frac{1}{3}rho < c^{2}>
Derive

pV=frac{1}{3}Nmc^{2}

Initial x momentum: mv_{x}

Final x momentum: -mv_{x}

Time between collision: t=frac{2L}{v_{x}}

N2L, average force on wall F=frac{Delta p}{t}=frac{2mv_{x}}{frac{2L}{v_{x}}}=frac{mv_{x}^{2}}{L}

Total force on wallsum_{all particles} frac{mv_{x}^{2}}{L}=frac{m}{L}sum v_{x}^{2}

Mean squared speed <c^{2}>=frac{sum (v_{x}^{2}+v_{y}^{2}+v_{z}^{2})}{N}

Moving randomly: sum v_{x}^{2}=sum v_{x}^{2}sum v_{y}^{2}=sum v_{x}^{2}

<c^{2}>=frac{3sum v_{x}^{2}}{N}

sum v_{x}^{2}=frac{N<c^{2}>}{3}

Therefore, total force F=frac{m}{L}times frac{N<c^{2}>}{3}

P=frac{F}{A}=frac{Nm<c^{2}>}{3L^{3}}

But, V=L^{3} so, PV=frac{1}{2}Nm<c^{^{2}}>

Internal energy = KE + PE
Fr ideal gas, PE = 0 so Internal energy = KEU=sum frac{1}{2}m(v_{x}^{2}+v_{y}^{2}+v_{z}^{2})=frac{1}{2}Nm<c^{2}>therefore PV=NKT=frac{2}{3}Utherefore U=frac{1}{2}Nmc^{2}=frac{2}{3}NKT
Boyle’s Law For a fixed amount of an ideal gas at a constant temperature:
Its pressure is inversely proportional to its volume
P_{1}V_{1}=P_{2}V_{2}
Pressure
Law
For a fixed amount of an ideal gas at a constant volume:
Its pressure is directly proportional to its temperature
frac{P_{1}}{T_{1}}=frac{P_{2}}{T_{2}}
Charles’ Law For a fixed amount of an ideal gas at a constant pressure:
Its volume is directly proportional to its temperature
frac{V_{1}}{T_{1}}=frac{V_{2}}{T_{2}}
Absolute
zero
The temperature at which the pressure/ volume of a gas become
zero
KE=frac{1}{2}m<c^{2}>=frac{3}{2}kT
                                                               BLACK BODIES
Maxwell Boltzmann
Distribution
How many molecules will have a speed in a small range of speed
Black bodies
radiator
At every temperature above 0K objects radiate energy as
electromagnetic wave
A blackbody absorbs all the radiation that falls on it
Total energy radiated per second only depends on the surface area A
and the absolute temperature T
Stefan-Boltzmann
Law
The total amount of energy radiated per second is proportional to
the surface area A and the absolute temperature
E=sigma AT^{4}
Wein’s Law lambda _{max}T=2.898times 10^{3}=constant