Oscillation

Name Definition Note
                                                                SIMPLE HARMONIC MOTION
Simple harmonic motion Occurs when there is a force always act toward equilibrium point and the force is directly proportional to the displacement from equilibrium F=kx
Equation of
simple harmonic
motion
x=Acos wtv=-Aw sin wt

a=Aw^{2} cos wt=-w^{2}x

v_{max}=x_{o}w

a_{max}=x_{o}w^{2}

a=frac{d^{2}x}{dt^{2}}rightarrow frac{d^{2}x}{dt^{2}}=-w^{2}x x=x_{o}cos wt

x=x_{o}sin wt

This equation has 2 solutions that tell us how x changes with time
x_{o} is the maximum displacement from equilibrium = amplitude
Angular
frequency
w=sqrt{frac{k}{m}}=sqrt{frac{g}{l}}
                                                                        RESONANCE
Resonance Occur when the driving frequency is close to the natural frequency Maximum energy transferred from the driver to the oscillator
The amplitude of oscillation increases rapidly/ the oscillation is amplified The amount of amplification ↓  as damping ↑ (the
width of the curve ↑)
                                                                        DAMPING
Damping A resistive force that opposes the natural motion of an oscillator
Energy is dissipated from the oscillation
So, the amplitude of the oscillation decrease
Light damping With air resistance, T does not change
The amplitude decreases exponentially
s=s_{o}e^{-kt}cos wt
Heavy damping No oscillation
The object returns to equilibrium point slowly
Critical Damping The most efficient way of removing energy from an oscillator